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Abstract 

This study investigates agricultural commodity prices' asymmetric short and long-run impact 

on the clean energy prices index. To explore whether energy and non-energy agricultural 

commodities impact the clean energy prices index similarly or differently. Agricultural 

commodities are categorized into two main groups. The NARDL method was applied to 

estimate asymmetric long-run and short-run analysis on a daily data set from 3rd March 2005 

to 12th December 2021. The main results showed that agriculture commodities had a positive 

impact on the clean energy price index. All agricultural commodity prices showed a positive 

impact except rice, with an inverse impact of the previous day's prices and no impact for the 

same day and oil also showed an inverse impact on the first lag, and the other lags were 

impacting positively. In the long run, both groups’ commodity prices directly impacted the 

clean energy prices index. Further, the impact of rice prices was asymmetrical on its second 

lag of negative partial sums. The impact of oil prices was also observed as asymmetric. The 

findings of this study are important for the investors of clean energy markets, managers, 

policymakers, and regulatory bodies. 

Keywords: Agricultural Commodities, Clean Energy, NARDL, Energy commodities, Non- 

Energy  Commodities. 

 

1. Introduction 

Clean energy is produced from sources with zero emission and from natural renewable 

resources for instance solar, hydel, wind nuclear, geothermal, and bio energy (Dincer & Acar, 

2015); Pang et al. (2015). It generates hundreds of billions of dollars in macroeconomic grids. 

It is anticipated to grow rapidly worldwide. There are many reasons that the world is trying to 

switch to alternative sources of energy, for instance to decrease energy dependence on fossil 

oil energy sources, climate change, global warming to mitigate atmospheric  deterioration.  
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Its resources are cost efficient because most of them are naturally replenishable. Since last few 

decades world paying more focus to adopt the less polluting energy alternatives which can 

undermine the pollution related human health problems and mitigate the climate deterioration 

(Haines et al., 2007). Agricultural developments and technological use in agriculture directly 

for cropping and form management has increased dependence of this sector on fossil fuel 

energy. Agricultural sector indirectly also uses oil and fossil fuels just like fertilizer and 

pesticides manufacturing (Woods et al., 2010). This agricultural dependence on fossil oil 

sourced energy is the reason to increase cost of production of agricultural commodities and a 

reason for atmospheric deterioration . Technological use in agriculture increases production 

yield along with increase in cost of production. Alternatively, decrease in technology use also 

will decrease the yield of agricultural commodities. The decrease in output creates demand 

supply gap, which can increases agricultural commodity prices. Maghyereh and Abdoh (2021) 

narrate oil prices and energy are anticipated to drive the earnings on investments in the clean 

energy and the allied clean energy technology sectors. These interrelationships will also have 

significant repercussions for the future growth of clean energy production therefore, it 

enlightens investors and assists governments to plan a suitable and inclusive energy strategies 

that reflect the circumstances in other allied markets. This scenario of agricultural commodity 

prices coupling with oil prices and technology supports the argument to use energy mix and to 

add alternative energy sources like clean energy. The mixed energy grid in agriculture can help 

to control the commodity prices up to the usage of alternative energy inclusion in agricultural 

sector. The shifting of agriculture sector’s energy usage from fossil fuel energy to clean and 

energy will help to control the global prices of agricultural commodities and inflation. Clean 

energy slightly decreases total factor emission and increases global economic output efficiency 

(Pang et al., 2015). Clean energy technologies aims to achieve efficient cost effective and 

environmental friendly solution of the energy requirements (Dincer & Acar, 2015).  

This study has categorized agricultural commodities into two subgroups, energy 

agricultural and non-energy agricultural commodities. There are eight major agricultural 

commodities which are traded in commodity markets i.e. corn, soybean, wheat, sugar, rice, 

cotton, coffee, and coca. Out of these eight Corn, sugar, and soybean are used to produce 

ethanol and biodiesel, these three are included as energy agricultural commodities and the 

remaining all are included in non-energy agricultural commodities subcategory. The 

investigation of the nonlinear short term and long-term relationship between agriculture energy 

and non-energy commodities can provide understanding in policy formulation for decoupling 

fossil energy and agricultural commodity prices nexus. Due to the agriculture sector 

dependence on fossil energy sources, it gets affected by the variations in fossil energy prices. 

The fossil energy market prices and agricultural commodity prices have a significant role in 

shaping clean energy market dynamics (Maghyereh & Abdoh, 2021). Clean energy is emerging 

as an alternative to fossil sourced energy (Ayres & Ayres, 2009; Barreto, 2018; Payam & 

Taheri, 2018). Clean energy technologies now a days playing pivotal role in sustainability in 

environmental resilience and in mitigation of the environmental deteriorating effects of fossil 

form of energy. By examining their influence, researchers can reveal important insights into 

market behavior, price associations, and risk management strategies, which are vital for 

investors, stakeholders, and policymakers alike. The traditional models are not efficient to 

capture complex asymmetric nexus among clean energy and agricultural commodities. 

Nonlinear autoregressive distributed lag model (NARDL) is efficient to discover asymmetric 

effects, where the impact of decreases or increases in commodity market prices on clean energy 

consequences differs in direction of magnitude (Shin et al., 2014). This model is efficient to 

capture the short run relationship between the constructs. In the scenario of agricultural 

commodities and clean energy immediate reactions in the response of the agricultural prices 
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variations insights are valuable for managers and investors seeking to optimize resources 

allocation and manage short term risk. By scanning the long-term dynamics, researchers can 

gauge the sustainability of clean energy investments, advise policy decisions aimed at 

progressing long-term energy security and environmental sustainability. 

There is no evidence found in literature that had investigated the impact  of energy and 

non-energy agricultural commodities prices on clean energy market and the comparison of the 

impacts of both categories on it. The focus of this study is to investigate the asymmetric impact 

of energy and non-energy agricultural commodity prices on the clean energy market prices 

gauging index. Gorton et al. (2012) emphasized that commodity futures prices and risk vary 

across commodities and is dynamic and time varying. The oil prices and energy input prices 

volatility significantly transmits to the agricultural commodities, raw material prices indices, 

metal and manufacturing indices (Kirikkaleli & Güngör, 2021). The volatility in oil prices and 

high rises directly and indirectly affects the cost of production of agriculture that causes rise in 

the prices. Another cause world climate awareness and hard policies for oil, fossil dependent 

energy and carbon emission, on the other hand incentivized mechanism for clean and renew 

able energy sources like green energy taxes (Sun et al., 2020). These are the reasons agriculture 

is switching to clean energy as an alternative to fossil fuel energy. There are vast literature 

available on studies of commodities prices co-movements with energy indices, oil prices, 

energy price indices, metal indices and carbon emission (Kirikkaleli & Güngör, 2021; Naeem 

et al., 2021). The nonlinear spillover between green bonds and agricultural commodities crude 

oil, metal, natural gases (Kassouri et al., 2021).The green stocks, clean energy, high tech. stocks 

are same (Naeem et al., 2021). There are at least three contributions of our study, firstly a novel 

viewpoint on the relationship between clean energy and agricultural commodities’ both 

categories. The segregation of the asymmetric impact of both categories is worthwhile for the 

understanding enhancement of complex dynamics among these both sectors and fills that gap 

in literature. Secondly using NARDL model empirical analysis, study stipulates interesting 

concrete insights regarding the differential impacts of non-energy and energy agricultural 

commodities on the clean energy market prices. The empirical findings corroborate not only 

the theoretical framework but also offer practical implications which can help in decision 

making process in the energy and agricultural sectors. The traditional models fail to estimate 

the asymmetric short term and long-term impact. When variables exhibit mixed stationary like 

at the I(0) and I(I) cointegration. The traditional linear models’ assumptions limit their 

applicability. For instance, multiple regression model requires all variable must be cointegrated 

at I(0) level, VAR model required all variables must be cointegrated at first difference. In this 

condition the family of ARDL model is applicable for mixed stationery with the limit that no 

variable should be cointegrated at I(II) level. We applied NARDL model to capture the 

asymmetric effects in short run and long run. For the comparison of the impacts of both 

agricultural commodities on the clean energy market. Thirdly by identifying the distinct 

impacts of energy and non-energy agricultural commodities on the clean energy market, the 

research offers valuable guidance for designing policies that promote sustainable energy 

transitions while considering the implications for agricultural markets and energy sector. The 

major results of both the categories of agricultural commodities show positive impact on the 

clean energy market prices. Interestingly only the rice showed the asymmetric impact. WTI oil 

has shown major influence on the clean energy prices. While both categories of agricultural 

commodities exhibited long run as well as short run impact on clean energy prices.  

This study captures the asymmetric impact of both energy and non-energy agricultural 

commodities on the clean energy market. The comparison of influence of both agricultural 

commodities categories on clean energy  provides interesting and notable insights, that how 

prices of each category impact clean energy market. The dynamic relationship between 
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agricultural commodities’ categories and clean energy market are useful for policymakers like 

energy regulatory bodies, government, environmental protection agencies and a guide for 

investors to help in investment decisions. The findings are helpful for investors for both sectors 

in investment decisions. Furthermore, the behavior of clean energy in the response of price 

changes in agricultural commodities can help them for taking robust short-term and long-term 

investment decisions. We employed the NARDL model which strengthens the methodological 

rigor in study. This model is specifically suitable for capturing the asymmetric short run and 

long run impact of the constructs when variables are cointegrated on different levels. By using 

this advanced econometric model our study strengthens robustness of its findings and 

contributes to the advancement of the econometric methodology to explore the nexus between 

energy markets and agriculture economics. 

2. Literature Review 

Working is the father of the understanding of the price relationship between cash and future 

commodities (Working, 1948, 1949). He formulated a generally acceptable model of cash-

future price relationship where intertemporal price relationship, or spot-future and nearby-

distant price differences, both positive and negative are viewed as price of storage. These price 

spreads provide incentives or disincentives to the store and hedge commodities. Intertemporal 

price relationships are determined by the net cost of carrying stocks. The future price for any 

delivery month is equal to the current spot price plus the cost storage, which includes physical 

outlay costs, interest charges and possibly a risk premium. The positively sloped nonlinear 

storage curve associates larger carry price spread relationship and vice versa (Garcia & 

Leuthold, 2004).  The future prices will depend on an equilibrium convenience yield obtained 

from competition between potential stores of the commodity. The equilibrium convenience 

yield contains inherent information about production technologies and consumer preferences 

in the commodity market. (Hilliard & Reis, 1998).  

The commodities future price at the start of the day is considered as zero as the price 

changes during trading in day is satisfies the CAPM model (Black, 1976). The two hypothesis 

prevails concerning the motives for hedging of cost. The first was proposed by J. M. Keynard 

and J. R. Hicks, who stated that hedgers compensate speculators for taking on risk by paying a 

risk premium, with the goal of minimizing risk. According to the Keynes-Hicks hypothesis, 

demand, supply, and spot prices in commodities markets should all be expected to be constant 

for a few months under typical circumstances. Additionally, there is a lack of confidence 

among traders regarding these expectations, as the futures price, for example, for a delivery 

date of one month is certain to fall short of the spot price that traders anticipate would hold one 

month from now. The other Holbrook Working Hypothesis holds that hedging is not just done 

to reduce risk but also to simplify company decisions, save expenses, and anticipate profiting 

from a favorable change in the spot-futures price connection. The need for energy is growing 

worldwide, with a major reliance on sources supplied from fossil fuels. A paradigm shift from 

fossil fuels to green energy and renewable energy sources, such as corn and sugarcane, which 

are considered sources of bio-ethanol and soybeans, which are sources of biodiesel, has 

occurred as a result of these sources' unexpected extinction and the world's search for 

alternative energy sources (Srirangan et al., 2012). The climate change, energy security and 

fossil fuels unpredictable demise had created interest investors to invest in the reliable 

alternative energy sources like renewable energy, clean energy and biofuels (Sadorsky, 2021). 

While in the context of our study resource dependency theoretical (RDT) framework, is 

applicable in the connection of the energy prices variations external pressure on agricultural 

sector forces to switch from fossil energy sources to alternative energy sources. As Pfeffer and 

Salancik, (1978) postulates how organizations depend on external resources for survival and 
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growth. In this context RDT framework assumptions fits on our study how agricultural sector 

prefers to substitute the external resources to be cost efficient and environmentally friendly for 

the purpose to contribute to adopt the environmental deterioration controlling policies. 

 Kuang, (2021) established that investors in oil energy equities can gain from risk 

divergence through both green bonds and clean energy stocks. Green bonds, on the other hand, 

reduce risk, whilst clean energy equities typically increase the risk of the global portfolio equity 

indices. (Naeem et al., 2021) determined the nonlinear relationship between Islamic index 

returns and Islamic gold prices. During normal market condition gold to be diversified for 

Islamic stock indices and Islamic equity sectors. Aumeboonsuke (2021) reported that Thailand 

stock market is responsive to commodities like gold, metals, auricular commodities, oil and 

energy prices. Sun et al. (2021) unearthed that there is bidirectional causality between 

agricultural commodities. Both the commodities remain unaffected from the shocks during 

Covid19 pandemic. Dawar et al. (2021) reported in their findings that clean energy dependence 

decreasing form crude oil returns while lagged effect of WTI is significant on clean energy 

returns generally pointing towards the clean energy stocks reacts differently to latest 

information of oil returns in different markets. Further claimed asymmetry during negative oil 

prices while no impact of oil prices during positive increase in oil prices on clean energy stocks. 

These findings indicated that the patterns of return, volatility, and shock spillover are 

remarkably diverse. Furthermore, they discovered the benefits of dynamic diversification for 

energy-related stock markets from energy commodities, particularly heating oil. It is also clear 

that SPGO and SPGCE stocks have the highest average ideal weight and hedging effectiveness 

for one another, suggesting that SPGO's poor performance is significantly offset by SPGCE's 

strong performance. (Asl et al., 2021). The energy prices have positive significant effect on 

agricultural food prices from any oil prices stocks evidence of linkage between energy and 

agricultural commodities. Also found the impact of biofuel prices on agricultural food prices 

Taghizadeh-Hesary et al. (2019) Changes in energy prices can affect agricultural production in 

two ways: either directly through energy consumption or indirectly through energy-related 

inputs like fertilizer. Energy taxes and subsidies, as well as changes in the natural gas and oil 

markets, can all have an impact on the energy costs that American farmers and ranchers must 

pay. Regardless of the cause of the increase in energy prices, higher production expenses 

associated to agriculture would typically result in decreased agricultural output, higher 

agricultural product prices, and lower farm income (Sands et al., 2011). The ability of 

agricultural commodity to act as hedge in the contrast of oil returns (Tiwari et al., 2021). 

Empirically investigated that effect of oil supply shocks on the returns of clean energy firms 

concentrated on the short term while there was long run shocks of the aggregate demand  

(Maghyereh & Abdoh, 2021).  

3. Material and Methods 

The quantitative secondary data are used for the analysis of our study. Daily data from 3rd 

March 2005 to 6th December 2021 extracted from source yahoo finance for all agricultural 

commodities and WTI oil prices. Data for agricultural commodities and oil prices were 

available for a much longer time horizon but samples were selected to align the commodities 

data with the clean energy index data, that is available from 3rd March 2005 and onwards. The 

Figure 1. represents the daily prices of agricultural commodities and the clean energy index. 

The US WilderHill PBW Clean Energy Index data is also extracted from yahoo finance. It 

serves as the foundation for the Invesco WilderHill Clean Energy ETF (Fund). Typically, the 

fund allocates no less than 90% of its total assets to common stock shares, which make up the 

index. The Index is a prominent standard that traces the performance of clean energy companies 

in the United States. Contains firms involved in various sectors such as clean technology 
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development, renewable energy production and energy efficiency. The index specifies 

significant insights into the trends and growth within the clean energy industry. The index 

mirrors the mounting importance of sustainable energy solutions in concentrating 

environmental concerns and advancing directed towards a low-carbon future. Investors and 

researchers consider the index as a trustworthy gauge of the market dynamics and financial 

performance of clean energy prices, suggesting a broad glimpse of the sector's progression over 

time. The equities of American publicly traded companies that are involved in conservation 

and cleaner energy expansion make up the index. Every quarter, the fund and the index are 

reconfigured and rebalanced. All the variables described in Table 1. are converted into returns 

for the purpose of normality by applying equation 1 below. 

𝐿𝑛𝑅𝑡 =  𝑙𝑛(𝑃_𝑡 / 𝑃_(𝑡 − 1))                        (1) 

Table No 1. Variable Description 

Variable Notation Unit of Measurement 

WilderHill PBW Clean Energy Index CNEN  Index Points 

Corn Prices CRN USD 

Soybean Prices SOY USD 

Sugar Prices SGR USD 

Coca Prices CC USD 

Coffee Prices COF USD 

Cotton Prices CTN USD 

Wheat Prices WHT USD 

Rough Rice Prices 

OIL Prices 
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Figure 1. Clean Energy and Agricultural Commodities Prices 

3.1 Nonlinear autoregressive distributed lag NARDL Model 

NARDL (Nonlinear autoregressive distributed lag) model is employed to estimate the 

relationship of positive and negative partial sum squares respectively. Any financial time series 

data analysis must begin with a unit root test since the results of these tests are crucial in 

determining the best statistical approach to apply. Data normality, scatterness, and central 

values can all be inferred using descriptive statistics. In order to determine the kind and degree 
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of associations between the variables, correlation was also examined. In the end diagnostic 

tests are used to evaluate the model's significance and robustness. Time series data are utilized 

for analysis, but because of problems with variable integration, linearity, leverage effects, and 

time variance, time series data analysis is very complex. As a result, one way to decide a model 

is to look at the findings of the unit root test. Nkoro and Uko (2016) argued that the existence 

of a long-term relationship is indicated by the theory's requirements that means and variances 

be constant, or, to put it another way, that they be independent of their lags or previous values 

and are not time variants; however, time series data do not typically exhibit this feature. Time 

series data may have these issues because of leverage effects, volatility clustering, and 

leptokurtic features. These are the primary factors influencing data integration. The estimations 

of t-statistic, R2, F-statistic, and DW-Stat values become extremely significant when the 

conventional regression OLS test is applied to non-stationary data; nonetheless, those would 

be deceptive and unreliable parameters since spurious regression may arise.  

As the (Nkoro & Uko, 2016) stated that the ARDL model fails if any variable is 

assimilated on I(2) but works when all the variables are integrated on I(0), I(1), or a 

combination of the two integrations. Additionally, he suggests that the NARDL Cointegration 

Bound test (Wald) can be used to find long-term relationships if the "F-statistic" value is greater 

than the bands value; on the other hand, if the F-statistic value is less than the lower band, this 

indicates that there is no long-term link (Nkoro & Uko, 2016) proposed re-parametrization of 

the integrations to ECM to validate the short run dynamics of relationship in order to further 

verify the short run affiliation. This study examines the asymmetric long- and short-term effects 

of energy- and non-energy-related agricultural commodities on the clean energy market using 

the Nonlinear Autoregressive Distributed Lags model (NARDL). NARDL model developed 

by Shin et al. (2014) When time series explanatories have an asymmetric effect on the 

dependent variable, NARDL is relevant. The partial +ve and -ve sums represent a deeper 

breakdown of the explanatory variables. When the partial +ve and partial -ve sums of a variable 

affect the dependent variable in different directions or magnitude, it is referred to as 

asymmetric.  According to  Larsson and Haq (2016) the family of ARDL models became more 

familiar as a result of addressing the determination of both short-term and long-term 

interactions between the sets of independent and dependent variables at the same time. They 

added that their econometric model is strong enough to yield improved findings when testing 

for both short- and long-term interactions on medium- and large-sized data. Spurious regression 

for non-stationary variables is the primary issue in time series data analysis, and the ARDL 

family has addressed this issue to a large degree. In comparison to other models such as the 

Granger causality model, VAR model, and VECM, NARDL yields superior findings for both 

short- and long-term relationships. The following equations describe the long-run models for 

Panel A and B, respectively: equations 2 and 3. 

𝐿𝑛𝐶𝑁𝐸𝑁 = 𝛼° + ∑ ⬚

𝑝

𝑖=1

𝛼1∆𝐿𝑛𝐶𝑁𝐸𝑁𝑡−𝑖 + ∑ ⬚

𝑞

𝑖=0

𝛼2∆𝐿𝑛𝐶𝑅𝑁𝑡−𝑖
+ + ∑ ⬚

𝑞

𝑖=0

𝛼3∆𝐿𝑛𝐶𝑅𝑁𝑡−𝑖
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼4∆𝐿𝑛𝑆𝑂𝑌𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼5∆𝐿𝑛𝑆𝑂𝑌𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼6∆𝐿𝑛𝑆𝐺𝑅𝑡−1
+

+ ∑ ⬚

𝑞

𝑖=0

𝛼7∆𝐼𝑛𝑆𝐺𝑅𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼8∆𝐼𝑛𝑂𝑖𝑙𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼9∆𝐼𝑛𝑂𝑖𝑙𝑡−1
−

+ 𝜌𝐿𝑛𝐶𝑁𝐸𝑁𝑡−1 + 𝜑1
+𝐿𝑛𝐶𝑅𝑁𝑥𝑡−1

+ + 𝜑2
−𝐿𝑛𝐶𝑅𝑁𝑡−1

− + 𝜑3
+𝑆𝑂𝑌𝑡−1

+ + 𝜑4
−𝑆𝑂𝑌𝑡−1

−

+ 𝜑5
+𝐿𝑛𝑆𝐺𝑅𝑡−1

+ + 𝜑6
−𝐿𝑛𝑆𝐺𝑅𝑡−1

− + 𝜑7
+𝐿𝑛𝑂𝑖𝑙𝑡−1

+ + 𝜑8
−𝐼𝑛𝑂𝑖𝑙𝑡−1

−

+ 𝜇𝑡                                                                           (2) 
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𝐿𝑛𝐶𝑁𝐸𝑁 = 𝛼° + ∑ ⬚

𝑝

𝑖=1

𝛼1∆𝐿𝑛𝐶𝑁𝐸𝑁𝑡−𝑖 + ∑ ⬚

𝑞

𝑖=0

𝛼2∆𝐿𝑛𝐶𝑂𝐹𝑡−𝑖
+ + ∑ ⬚

𝑞

𝑖=0

𝛼3∆𝐿𝑛𝐶𝑂𝐹𝑥𝑡−𝑖
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼4∆𝐿𝑛𝐶𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼5∆𝐿𝑛𝐶𝐶𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼6∆𝐿𝑛𝐶𝑇𝑁𝑡−1
+

+ ∑ ⬚

𝑞

𝑖=0

𝛼7∆𝐿𝑛𝐶𝑇𝑁𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼8∆𝐿𝑊𝐻𝑇𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼9∆𝐿𝑛𝑊𝐻𝑇𝑡−1
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼10∆𝐿𝑛𝑅𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼11∆𝐿𝑛𝑅𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼12∆𝐿𝑛𝑂𝑖𝑙𝑡−1
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼13∆𝐿𝑛𝑂𝑖𝑙𝑡−1
− + 𝜌𝐿𝑛𝐶𝑁𝐸𝑁𝑡−1 + 𝜑1

+𝐿𝑛𝐶𝑂𝐹𝑡−1
+ + 𝜑2

−𝐿𝑛𝐶𝑂𝐹𝑡−1
−

+ 𝜑3
+𝐿𝑛𝐶𝐶𝑡−1

+ + 𝜑4
−𝐿𝑛𝐶𝐶𝑡−1

− + 𝜑5
+𝐿𝑛𝐿𝑛𝐶𝑇𝑁𝑡−1

+ + 𝜑6
−𝐿𝑛𝐶𝑇𝑁𝑡−1

−

+ 𝜑7
+𝐼𝑛𝑊𝐻𝑇𝑡−1

+ + 𝜑8
−𝐼𝑛𝑊𝐻𝑇𝑡−1

− + 𝜑9
+𝐿𝑛𝑅𝐶𝑡−1

+ + 𝜑10
− 𝐿𝑛𝑅𝐶𝑡−1

−

+ 𝜑11
+ 𝐿𝑛𝑂𝑖𝑙𝑡−1

+ + 𝜑12
− 𝐿𝑛𝑂𝑖𝑙𝑡−1

− + 𝜇𝑡(3) 

The differenced variables with the summation signs show the error correction 

dynamics, and variables with 𝜑s show the long-run relationship”. Ln with each variable 

indicates that the variables natural log has been taken. “After estimating the lag length, the 

long-run relationship is examined with the help of a test named NARDL bounds test. In the 

above-given model, the null hypothesis for the bounds test is H0: 𝜑1 = 𝜑2 = 𝜑3 = . . . . =𝜑12 

= 0, which indicates that the existence of long run co-integration. Rejection of the null 

hypothesis, in this case, indicates that independent variables are co-integrated with” dependent 

variable. “Once the results confirm that there is co-integration, the short-run analysis is 

conducted by” the following ECM, equation 4 and 5 for panel A and B respectively given 

below: 

𝐿𝑛𝐶𝑁𝐸𝑁 = 𝛼° + ∑ ⬚

𝑝

𝑖=1

𝛼1∆𝐿𝑛𝐶𝑁𝐸𝑁𝑡−𝑖 + ∑ ⬚

𝑞

𝑖=0

𝛼2∆𝐿𝑛𝐶𝑅𝑁𝑡−𝑖
+ + ∑ ⬚

𝑞

𝑖=0

𝛼3∆𝐿𝑛𝐶𝑅𝑁𝑡−𝑖
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼4∆𝐿𝑛𝑆𝑂𝑌𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼5∆𝐿𝑛𝑆𝑂𝑌𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼6∆𝐿𝑛𝑆𝐺𝑅𝑡−1
+

+ ∑ ⬚

𝑞

𝑖=0

𝛼7∆𝐼𝑛𝑆𝐺𝑅𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼8∆𝐼𝑛𝑂𝑖𝑙𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼9∆𝐼𝑛𝑂𝑖𝑙𝑡−1
−

+ 𝑛 𝐸𝐶𝑀𝑡−1 + 𝜇𝑡    (4) 



23 
 

𝐿𝑛𝐶𝑁𝐸𝑁 = 𝛼° + ∑ ⬚

𝑝

𝑖=1

𝛼1∆𝐿𝑛𝐶𝑁𝐸𝑁𝑡−𝑖 + ∑ ⬚

𝑞

𝑖=0

𝛼2∆𝐿𝑛𝐶𝑂𝐹𝑡−𝑖
+ + ∑ ⬚

𝑞

𝑖=0

𝛼3∆𝐿𝑛𝐶𝑂𝐹𝑥𝑡−𝑖
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼4∆𝐿𝑛𝐶𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼5∆𝐿𝑛𝐶𝐶𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼6∆𝐿𝑛𝐶𝑇𝑁𝑡−1
+

+ ∑ ⬚

𝑞

𝑖=0

𝛼7∆𝐿𝑛𝐶𝑇𝑁𝑡−1
− + ∑ ⬚

𝑞

𝑖=0

𝛼8∆𝐿𝑊𝐻𝑇𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼9∆𝐿𝑛𝑊𝐻𝑇𝑡−1
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼10∆𝐿𝑛𝑅𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼11∆𝐿𝑛𝑅𝐶𝑡−1
+ + ∑ ⬚

𝑞

𝑖=0

𝛼12∆𝐿𝑛𝑂𝑖𝑙𝑡−1
−

+ ∑ ⬚

𝑞

𝑖=0

𝛼13∆𝐿𝑛𝑂𝑖𝑙𝑡−1
− + 𝑛 𝐸𝐶𝑀𝑡−1 + 𝜇𝑡(5) 

Where the lag lengths, 𝑝 and 𝑞, are chosen based on the AIC criteria. The ECM shows 

how quickly short-term adjustments are made in the direction of the long-term equilibrium 

relationship. The clean energy index variance was then observed using the decomposition of 

variances technique, which explains both shockwaves to explanatory factors and shockwaves 

to the index itself. Lastly, the LM test was employed to diagnose serial correlation in order to 

validate and verify the diagnostic results. CUSUM test statistics are used to assess the stability 

of the model. 

4. Results and Findings 

This study contains asymmetric investigation of the impact of agricultural commodity prices on 

the US clean energy index. Result would be reported in the sequence by descriptive statistics, 

correlation for variables association strength and direction. Unit root test results than main 

model NARDL results followed by the diagnostics. Table 2. below reports a descriptive 

statistics summary of the selected variables for analysis. The oil showed the highest return in a 

day, and the clean energy exhibited lowest return, which is negative, while from commodities 

soybean showed highest return. These findings of return can be observed in Figure 2. When the 

highest loss in a single day is shown by rice followed by the oil while the lowest one by wheat. 

The highest profit in a single day exhibited by oil while the lowest one by soyabean. The 

skewness results in evidence that series of Oil, Rice, Coca are symmetrical while Clean Energy, 

Corn Soy are moderately skewed. Data series of Coffee, Cotton and Sugar are highly skewed. 

If the kurtosis value is 3 then data are said to be Mesokurtic. Greater than 3 are leptokurtic less 

than 3 Platykurtic. Only coffee stand Mesokurtic while the coca, soyabean and wheat shown 

platykurtic properties and the remain exhibited leptokurtic fait tails. The P value of the Jarque-

Bera test also significant that rejects the null hypothesis for all series that the data is not normally 

distributed. The above results support that data are not normally distributed which is the 

evidence of symmetries, which supports the nonlinear ARDL model’s application. 
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Table No 2. Descriptive Statistics 

  CNEN CC COF CRN CTN OIL RC SOY SGR WHT 

Mean -0.000003 0.0000513 0.0002177 0.0002961 0.0002347 0.0003406 0.0001963 0.0002828 0.0002275 0.0002090 

Median 0.0011013 0.0004101 0.0003585 0.0003373 0.0002216 0.0008573 0.0000000 0.0000000 -0.000506 -0.000275 

St. Dev. 0.0240354 0.0196917 0.0223683 0.0208442 0.0197824 0.0301231 0.0175314 0.0160061 0.0228551 0.0207508 

Minimum -0.145550 -0.111829 -0.147212 -0.251976 -0.199382 -0.281382 -0.2997029 -0.092784 -0.170283 -0.089948 

Maximum 0.1663459 0.1149131 0.1618105 0.1651853 0.1052745 0.4258324 0.1020731 0.0750465 0.1442942 0.1537061 

Kurtosis 5.3679151 2.2844379 3.1718024 11.1029902 6.0353493 28.8507207 29.1590378 2.7520261 4.0480960 2.3171476 

Skewness -0.466275 -0.214781 0.112314 -0.710369 -0.459440 1.154718 -1.593571 -0.103603 -0.112116 0.1735812 

Count 3593 3593 3593 3593 3593 3593 3593 3593 3593 3593 

  

 J. Bera 548.6 105.2 2120.6 376.2 16407.0 64.6 127.2 359.3 753.0 422.6 

 Prob 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Figure No 2. Clean Energy and Agricultural Commodities Returns 

Table 3. below reports correlations of variables results are displayed. It is quite interesting and 

favorable that all variables shown low are moderate but positive association among them. There 

is not any highly correlated variable that can create problems of misspecification and problems 

like multicollinearity in the analysis further. 

Table No 3. Correlation Matrix 

  CNEN CC COF CRN CTN OIL RC SOY SGR WHT 

CNEN 1.000                   

CC 0.147 1.000                 

COF 0.163 0.185 1.000               

CRN 0.090 0.064 0.114 1.000             

CTN 0.235 0.147 0.200 0.121 1.000           

OIL 0.310 0.172 0.188 0.072 0.219 1.000         

RC 0.032 0.027 0.080 0.223 0.089 0.040 1.000       

SOY 0.206 0.103 0.155 0.465 0.190 0.166 0.208 1.000     

SGR 0.145 0.164 0.262 0.096 0.211 0.204 0.065 0.123 1.000   

WHT 0.089 0.046 0.104 0.576 0.108 0.024 0.212 0.381 0.089 1.000 

 

Stationarity test results are reported in Table 4. below, ADF test was applied to check the unit 

root on time series data, on I(0) level integration only coca and rice two series were stationary, 

and the other variables shown unit root. While on I(I) first difference all the variables are 

stationary at 1% CI level. 
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Table No 4. Unit Root Test Results (ADF Test) 

Level I(0) I(I) 

Variable T-Statistic T-Statistic 

CNEN -1.595     -39.214*** 

CC       -2.972*** -59.975*** 

COF -1.812 -61.686*** 

COR -2.303 -58.708*** 

CTN -2.363 -53.117*** 

SOY -1.711 -58.751*** 

SGR -2.563 -61.245*** 

WHT -2.466 -58.235*** 

RCE       -3.534*** -60.686*** 

Oil -2.344 -48.348*** 
Note: (*, **, ***) three denotes significance at 10%, 5% & 1% respectively 

Table 5. reports results, it has been observed that all agricultural commodity prices 

almost behaved in the similar trend on clean energy index prices and exhibited positive impact. 

Only asymmetry has been noted in the Oil prices in both energy and non-energy agricultural 

panels and rice shown asymmetrical impact. Further the R-square value is 0.73 and 0.75 of the 

models for Panel A and B, which shows the goodness of fit and explanatory power of the 

constraints. The spread of the R square and adjusted R squares are also below 0.01 which also 

strengthens the suitability of the models. The DW test score is close to 2 which evidence there 

is not any problem of serial correlation in the result estimates. 

Table No 5. NARDL Results 

Dependent Variable: DLNCE    Dependent Variable: DLNCE  

Method: NARDL Panel A   Method: NARDL Panel B 

Selected Model: ARDL(1, 0, 0, 0, 0, 0, 0, 0, 1)  Selected Model: ARDL(3, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 2, 0) 

Variable Coefficient Std. Error Variable Coefficient Std. Error 

DLNCE(-1) 0.025520 (0.015844) DLNCE(-1) 0.019271 (0.016377) 

DLNCRN_POS -0.009870 (0.020339) DLNCE(-2) 0.024615 (0.016363) 

DLNCRN_NEG -0.011856 (0.020318) DLNCE(-3) -0.036751*** (0.016363) 

DLNSOY_POS 0.228540*** (0.026893) DLNCC_POS 0.075683*** (0.019497) 

DLNSOY_NEG 0.232278*** (0.026815) DLNCC_NEG 0.074753*** (0.019516) 

DLNSGR_POS 0.070013*** (0.016888) DLNCOF_POS 0.070230*** (0.017408) 

DLNSGR_NEG 0.070485*** (0.016861) DLNCOF_NEG 0.070171*** (0.01)7413 

DLNOIL_POS 0.182878*** (0.014876) DLNCTN_POS 0.178739*** (0.019742) 

DLNOIL_NEG 0.254302*** (0.016103) DLNCTN_NEG 0.177986*** (0.019760) 

DLNOIL_NEG(-1) -0.072598*** (0.017235) DLNOIL_POS 0.154115*** (0.017661) 

C 0.003736*** (0.001279) DLNOIL_POS(-1) 0.053370*** (0.026101) 

   DLNOIL_POS(-2) 0.002984 (0.026312) 

   DLNOIL_POS(-3) 0.036579 (0.019235) 

   DLNOIL_NEG 0.257368*** (0.019929) 

   DLNOIL_NEG(-1) -0.107140 (0.028802) 

   DLNOIL_NEG(-2) 0.041146 (0.028645) 

   DLNOIL_NEG(-3) 0.055665*** (0.018448) 

   DLNWHT_POS 0.064641*** (0.018563) 

   DLNWHT_NEG 0.068167*** (0.018478) 

   DLNRC_POS -0.042041 (0.028209) 

   DLNRC_POS(-1) 0.099922*** (0.035528) 

   DLNRC_POS(-2) -0.058191*** (0.026759) 
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Dependent Variable: DLNCE    Dependent Variable: DLNCE  

   DLNRC_NEG -0.002900 (0.025497) 

   C 0.006974*** (0.001555) 

R-squared 0.731356 R-squared 0.752786 

Adjusted R-squared 0.728930 Adjusted R-squared 0.747320 

F-statistic 54.13669 F-statistic 27.95258 

Prob(F-statistic) 0.000000 Prob(F-statistic) 0.000000 

Durbin-Watson stat 2.016769 Durbin-Watson stat 2.007941 

 

Table 6. below shows an F-bound test confirming the existence of Cointegration in both 

energy and non-energy agricultural commodity prices with clean energy prices. Cointegration 

existence can be confirmed from the F-static value that is greater than the upper bounds in all 

slabs in the table below. 

Table No 6. F Bound Test Results 

NARDL 
Significance 

level 

Lower 

Bound 

Upper 

Bound 
F Statistic K Cointegration 

Panel A 

10% 1.95 3.06 

381.9127 8 

Cointegration 

5% 2.22 3.39 Cointegration 

2.50% 2.48 3.7 Cointegration 

1% 2.79 4.1 Cointegration 

Panel B 

10% 4.78 4.94 

3 95.07131 12 

Cointegration 

5% 5.73 5.77 Cointegration 

2.50% 6.68 6.84 Cointegration 

1% 7.84 5.59 Cointegration 

Table 7. below exhibiting NARDL long run results, the long run results. Long run results 

are portrayed, all energy and non-energy agricultural commodity prices along with oil prices 

shown direct relationship with the clean energy index in long run.  

Table No 7. Long run Cointegration Results 

Panel A Panel B 

Variable Coefficient Variable Coefficient 

DLNCRN_POS 
-0.010129 

(0.020872) 
DLNCC_POS 

0.076227*** 

(0.019685) 

DLNCRN_NEG 
-0.012167 

(0.020850) 
DLNCC_NEG 

0.075291*** 

(0.019704) 

DLNSOY_POS 
0.234525*** 

(0.027742) 
DLNCOF_POS 

0.070734*** 

(0.017645) 

DLNSOY_NEG 
0.238361*** 

(0.027660) 
DLNCOF_NEG 

0.070675*** 

(0.017651) 

DLNSGR_POS 
0.071847*** 

(0.017320) 
DLNCTN_POS 

0.180024*** 

(0.020466) 

DLNSGR_NEG 
0.072331*** 

(0.017293) 
DLNCTN_NEG 

0.179265*** 

(0.020483) 

DLNOIL_POS 
0.187667*** 

(0.015321) 
DLNOIL_POS 

0.248822*** 

(0.025978) 

DLNOIL_NEG 
0.186462*** 

(0.015383) 
DLNOIL_NEG 

0.248813*** 

(0.026055) 
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C 
0.003834*** 

(0.001314) 
DLNWHT_POS 

0.065105*** 

(0.018787) 

  DLNWHT_NEG 
0.068657*** 

(0.018702) 

  DLNRC_POS 
-0.000313 

(0.025702) 

  DLNRC_NEG 
-0.002920 

((0.025681) 

  C 
0.007024*** 

(0.001573) 

 

Table 8. below shows the Error correction term which is known as speed of adjustment 

towards long run Cointegration from the short run. In both panels the error term is significant 

because ECT term should be between 0 and -1 in some cases it may be accepted up to -2. 

Therefore, in both panels error term is between 0 and -1 are closer to the -1. The ECT term 

confirms here short run relationship in the agricultural commodities as the speed of adjustment 

towards long run equilibrium after short term shocks. 

Table No 8. Error Correction Term 

NARDL Coefficient Std. Error t-Statistic Prob.    

Panel A   CointEq (-1) -0.974480 0.015844 -61.505111 0.0000 

Panel B   CointEq (-1) -0.992865 0.027604 -35.967678 0.0000 

 

The results of the LM test to confirm the presence of autocorrelation in the residuals are 

shown in Table 9. for every model, the LM test was used to confirm the serial correlation 

problem. The particular lag length criteria, which were determined using VAR based on SIC 

criteria, were used to verify the results. The diagnosis was used to determine whether or not 

residuals exhibit serial correlation. Panel A and B results indicate F Static insignificant value 

larger than 0.05. The null hypothesis, which states that there is no autocorrelation in the 

residuals, cannot be rejected based on the P value. 

Table No 9. Diagnostic test Results 

  Breusch-Godfrey Serial Correlation LM Test: Panel A Panel B 

   F-statistic 0.711158 0.094733 

   Obs*R-squared 0.715400 0.095181 

    Prob. F 0.3991 0.7583 

    Prob. Chi-Square 0.3977 0.7577 

 

The Figure 3 & 4. CUSUM graphs depict model stability, CUSUM results showing that model 

is stable. Because residuals line has not crossed upper and lower bands in both panels.  
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Figure No 3. Panel A CUSUM diagram of energy agricultural commodities and Clean 

Energy Index 
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Figure No 4. Panel A CUSUM diagram of non- energy agricultural commodities and 

Clean Energy Index 

5. Conclusion 

The main purpose of this study is to inspect the impact of energy and non-energy agricultural 

commodity prices on US clean energy prices index. The focus of study was extended to find the 

asymmetric long run and short run impact of agricultural commodity future prices on clean 

energy stock prices. The eight major agricultural commodities were selected as a sample for this 

study. Those eight commodities traded in the commodity future market of Chicago USA. 

Agricultural commodities were categorized into two groups i.e. energy agricultural and non-

energy agricultural commodities. The agricultural commodities used are source of biofuels were 

categorized as energy commodities and the remaining as non-energy commodities. Corn, 

soybean and sugar are included in energy agricultural commodities and cocoa, coffee, wheat, 

rice and cotton as non-energy agricultural commodities. Oil prices were used as the control 

variable to avoid the model misspecification issues. Time horizon of study was from 3rd March 

2005 to 12th December 2021 daily data total 3593 observations were per variable. The NARDL 

method was applied to estimate long run and short run asymmetric and impact of commodities 

future prices on clean energy prices index. 

Energy agricultural commodities prices show a direct impact on clean energy prices. 

Soy shown also positive impact on first lag while the other commodities only impact on current 

day not past day’s impact. On the other side non-energy agricultural commodity prices shown 

direct impact on current day except rice which shown no impact. While oil prices shown same 
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positive impact and inverse impact on first lag, while turned positive impact till lag 4. The rice 

previous day prices shown positive impact on clean energy prices consistent with (Sands et al., 

2011). It could be perceived from the above results as agricultural commodity prices increases 

that have parallel impact on clean energy prices. The insight supports our idea that clean energy 

is an alternative to fossil energy for the agricultural sector. Long run positive impact observed 

from both categories’ energy and non-energy agricultural commodities on clean energy market. 

The asymmetric effect is evidenced by rice prices and oil prices on clean energy market. Clean 

energy past prices impact was also asymmetric on its own.  

The above findings are useful for the investors of clean energy. The short-term findings as a 

guide for portfolio managers as the prices of fossil fuels fluctuates which is an indication for 

them to rebalance their portfolio to decide increase and decrease of the proportion of agricultural 

commodity futures and the clean energy stocks. The findings are useful for policymakers like 

governments whose are interested to draw policies to reduces pollution and carbon emissions 

can decide to provide tax exemptions, on clean energy adoptions to agriculture former and 

subsidized technological support for the adaptation of the clean energy to increase the proportion 

of clean energy into energy mix of the agricultural sector. 

Our study offers the basis for the research for the agricultural commodities and the clean 

energy, it may be extended to the other commodity sectors, like metals, industrial materials. 

This study is limited to the daily data, while it could provide interesting insights for the intraday 

high frequency data and its dynamic analysis or the event study of the different crises like the 

COVID-19 crises, US-China trade tension time period, global financial crises 2008. 
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